isospin - meaning and definition. What is isospin
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is isospin - definition

QUANTUM NUMBER RELATED TO THE WEAK INTERACTION
Isotopic spin; Strong isospin; Isobaric spin; Charge symmetry

isospin         
['??s?(?)sp?n]
¦ noun Physics a quantum number assigned to subatomic particles, such that similar particles differing only in charge-related properties (independent of the strong interaction) can be treated as different states of a single particle.
Origin
1960s: contr. of isotopic spin, isobaric spin.
Isospin         
In nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons.
Weak isospin         
QUANTUM NUMBER OF ELEMENTARY PARTICLES
Weak isospin projection
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or .

Wikipedia

Isospin

In nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons.

The name of the concept contains the term spin because its quantum mechanical description is mathematically similar to that of angular momentum (in particular, in the way it couples; for example, a proton–neutron pair can be coupled either in a state of total isospin 1 or in one of 0). But unlike angular momentum, it is a dimensionless quantity and is not actually any type of spin.

Etymologically, the term was derived from isotopic spin, a confusing term to which nuclear physicists prefer isobaric spin, which is more precise in meaning. Before the concept of quarks was introduced, particles that are affected equally by the strong force but had different charges (e.g. protons and neutrons) were considered different states of the same particle, but having isospin values related to the number of charge states. A close examination of isospin symmetry ultimately led directly to the discovery and understanding of quarks and to the development of Yang–Mills theory. Isospin symmetry remains an important concept in particle physics.